Когда человек обучается на программиста, то в вузе ему преподают большой спектр математических дисциплин. То, сколько будет изучено разделов, полностью зависит от прямой специальности. Как правило, преподаются теория функций комплексного переменного, дифференциальные уравнения, функциональный анализ и так далее. Однако знания в этих областях программисту не пригодятся.
В статье будут описаны только те разделы математики, которые действительно нужны. Важно понимать, если программист занимается специфическим софтом, например, разрабатывает утилиты для медиков или физиков, то полученных в институте знаний не хватит. Но для обычных повседневных программ их вполне достаточно.
Вам будет интересно:Ошибка "Виртуальный привод не найден" в UltraISO: причины и способы устранения
Области математики
Многие интересуются, можно ли стать программистом, не зная математики. Разумеется, можно. Программист - это не тот человек, который идеально решает уравнения и возводит числа в степень, а тот, который знает несколько языков программирования и способен создавать программы. Математические знания решают то, насколько человек будет компетентен в своей сфере работы.
Вам будет интересно:Лучшие книги по Java. Лучший самоучитель по Java для начинающих
Изучать приведенные в статье разделы математики до самых глубин не нужно. Достаточно знать основы и свободно в них разбираться. Если понадобятся более углубленные знания, их всегда можно получить из интернета.
Какие разделы математики нужны программисту? Речь идет в основном о дискретной. Важно разбираться в логике, комбинаторике, теории вероятности, математической статистике, линейной алгебре, теории графов и сложности. Как видим, все они развивают человека и рассчитаны на улучшение гибкости мышления. Далее рассмотрим каждую дисциплину отдельно.
Логика
Математик и программист – профессии, которые взаимосвязаны. Математику программирование, можно сказать, не нужно. Программисту разбираться во многих математических понятиях очень важно. Рассмотрим, чем полезна логика.
Вам будет интересно:Центр устройств Windows Mobile: описание, характеристики
Компьютер состоит из материальных деталей и программного обеспечения. Все они не могут работать без математической логики. Сейчас она используется широко во время применения различных языков программирования, позволяя делать программы максимально удобными и нересурсозатратными. Что собой представляет утилита? Это последовательная система, которая выполняет команды, вшитые в нее или же поступающие с устройств ввода-вывода. Если рассматривать понятие «программа» более детально, то можно заметить участие логики во всем этом процессе.
В 30-х годах 19 века появились первые идеи вычислительной машины. Тогда логика стала одной из фундаментальных структур. Сам математический раздел начал стремительно развиваться в начале 20 века. Исследования, которые тогда были проведены, положили начало всем языка программирования, основанным на алгоритмическом выполнении команд.
На сегодняшний момент этот раздел изучается для того, чтобы программист мог самостоятельно разрабатывать программы, не опираясь на созданные шаблоны. Однако успешное освоение логики будет развивать нестандартное мышление, которое является важным для любого программиста. В принципе, все сферы точной науки должны быть направлены именно на эту цель. Именно такую играет роль математика. В профессии программиста она является неотъемлемой частью.
Что касаемо более подробных разделов логики, которые стоило бы изучить, то нужно отметить булеву алгебру, логические переменные и операторы, таблицы истинности.
Комбинаторика
Что собой представляет данный раздел математики? Он учит вычислять количество возможных комбинаций для достижения целей. В отличие от вышеописанной логики, комбинаторика используется повсеместно. Нужно отметить, что она является негласной «матерью» тоже же теории графов. Последняя использовалась для создания сетевых протоколов, но об этом немного ниже. Все глубже вникая в создание различных утилит, становится понятно, зачем программисту математика. Именно благодаря этой науке информационные технологии так быстро и успешно развиваются. Если бы не она, то вряд ли мы могли бы увидеть компьютеры, маршрутизаторы, телефоны и так далее. Ведь для них нужна прошивка.
Дополнительные сведения о комбинаторике
Вам будет интересно:KMSpico: что это за программа, для чего она нужна и как использовать ее возможности по максимуму?
Также нужно отметить, что комбинаторика используется для работы маршрутизации в сетях. Искусственные нейронные сети также созданы на ее основе. Благодаря этому разделу математики происходит разработка искусственного интеллекта. Комбинаторика является неотъемлемой и в криптографии.
Следует отметить, что этот раздел математики требует развитого мышления, в чем помогает изучение логики. Как уже становится понятно, эти разделы связаны между собой и тесно переплетены. Именно поэтому их объединяют воедино под названием «дискретная математика».
Теория вероятностей
Те программисты, которые работают аналитиками данных, должны хорошо разбираться в теории вероятностей. Почему? Чтобы машинные методы работы не казались «волшебством», нужно разбираться в математической статистике. Она базируется на теории вероятностей.
Этот раздел математики можно разделить на две части. Первая дискретная, вторая непрерывная. Начинающих программистов, не любящих точную науку, можно огорчить, так как оба этих подраздела математики в профессии программиста пригодятся. Дискретная теория разработана для явлений, которые описываются с определенным количеством возможных вариантов. Речь идет, например, о монетках или игральных костях. Непрерывная базируется на явлениях, которые распределены в круге или на отрезке, то есть на плотном множестве.
Теория вероятностей в играх
Если программист собирается разрабатывать игры, а не сидеть в аналитическом отделе компании, ему все равно придется разобраться с теорией вероятности. Чтобы было понятно, зачем это нужно, рассмотрим простой случай. К примеру, объектом разработки является шутер. Механика стрельбы – практически главный элемент в таком программном проекте. Те шутеры, где оружие стреляет максимально точно, вряд ли понравится большинству игрокам. Поэтому следует добавлять разброс. Сделать точки максимально рандомными не следует. Это повлечет за собой проблемы с точной настройкой и нарушит игровой баланс. Если использовать знания из теории вероятности, то можно взять случайные показатели, а по их распределению сделать анализ того, как будет работать то или иное оружие с заданным разбросом. Так можно откорректировать игру.
Разбирая, какая роль математики в профессии программиста, относительно теории вероятности следует сказать, что благодаря этой науке создаются нейросети, биржевые торговые роботы, крипто-анализ и алгоритмы шифрования. Кроме того, машинное обучение – сфера, где использована математическая статистика и теория вероятности. Без них не обойтись.
Математическая статистика
Следует отметить, что статистика и теория вероятности взаимосвязаны. Первый раздел базируется на втором. Как правило, в вузах они изучаются обязательно. Сначала преподаются вероятности, потом уже благодаря полученным данным можно выучить статистику. Используется этот раздел также часто, как и теория вероятности. Он нужен практически в тех же сферах.
Математическая статистика – важная наука для любого программиста. Чтобы разобраться с ней, нужно иметь гибкое мышление и быть усидчивым. Мало просто походить на курсы, позаниматься с репетитором. Этого будет достаточно, чтобы выучить основы и базу. Чтобы действительно начать разбираться в этой теме – нет. В программировании она играет огромную роль. Именно благодаря статистике создаются динамические программы. Не всегда можно знать конечную цифру в выполняемом цикле, так как все данные вводятся с клавиатуры. Здесь поможет именно статистика. В любых неоднозначных задачах следует прибегать к помощи этого раздела математики. Для программистов она - как волшебная палочка. Главное - уметь ею пользоваться.
Что изучать в теории вероятности и математической статистике
Чтобы не испугаться того количества информации в данных темах, которые придется изучать, нужно понимать, какие знания нужны на начальном этапе. В самом начале следует освоить события и их вероятности, комбинации и последовательности, а далее теорему Байеса. Также нелишними будут зависимые события. Чтобы обучение давалось легко, лучше сперва освоить логику, потом комбинаторику и лишь после этого приступать к теории вероятности и статистике.
Вам будет интересно:Пакетные файлы: особенности, создание и требования
Программисту могут в работе пригодиться данные из тем дисперсии, матожидание, меры среднего значения выборки. Кроме того, стоит уделить внимание случайным переменным и их свойствам. Математика программистам нужна, чтобы в будущем создавать стабильные утилиты, которые на все 100 % справляются с требованиями пользователей.
Линейная алгебра
Этот раздел математики поможет освоить языки программирования. Важные темы: матрицы и векторы, а также базовые операции над матрицами. Почему они так важны? В любом языке программирования при выполнении сложной задачи создается матрица значений. Она работает таким же образом, как и в математике. Чтобы уметь правильно оперировать функциями языка программирования, нужно как следует подучить математику.
Алгебра для игр
Этот раздел математики для программистов будет полезен, если они собираются разрабатывать игры. Тогда стоит подучить дополнительно темы про векторы. Если в приложении есть экранные кнопки, можно обращаться к камере и ее направлению, но в любом случае придется воспользоваться знаниями из линейной алгебры. Вектор нужен для того, чтобы запоминать местоположение, направление и скорость объекта. Для движения машинки или другого персонажа придется использовать сложение векторов. Для стрельбы оружия понадобятся знания о том, как вычитать векторы. Этот же раздел математики необходим в играх, где происходят взрывы. Чтобы рассчитать расстояния между ними и персонажем, а также подсчитать ущерб, следует уметь рассчитать вектор, который находится между ними.
Теория графов
Специальности математик и программист связаны, как уже было сказано ранее. При этом любой успешный знаток точной науки сможет, подучив программирование, создавать программы. Что касаемо теории графов, то ее следует знать поверхностно. Она нужна для того, чтобы понимать, как устроены те или иные детали, программы и так далее.
Благодаря данному разделу математики реализуются алгоритмы поиска решений. Речь идет, например, о кратчайшем пути по маршруту, расположении дорожек на микросхеме, поиске победной игровой стратегии.
Кроме того, нередко для работы с программой и ее отладкой необходимо использовать AST. Если программист не понимает основ графов, то ему будет легко запутаться в git. Для анализа и разрешения различных задач тоже понадобится этот раздел дискретной математики. Для нахождения путей и определения цикличностей, которые используются не так уж редко (социальные сети, навигаторы, абстракции в компьютерных играх), используется теория графов.
Изучать в этом разделе советуем графы и все, что с ними связано (вершины, ребра, подграфы). Также нужно обратить внимание на пути, циклы и маршруты. Следует разобраться с тем, какие операции могут совершаться над графами.
Теория сложности
Рассматривая, какие нужно изучать разделы математики программистам, советы опытных айтишников о теории сложности никак нельзя обойти стороной.
Этот раздел математики необходим для того, чтобы описывать базовые и простые элементы, которые в дальнейшем влияют на систему в целом и помогают решать сложные задачи. Чтобы с ними не возникало проблем, следует изучать логарифмы и экспоненту. Нередко в работе используются знания из понятия арифметической суммы. Скорость роста алгоритмов и их анализ тоже понадобятся.
Итоги
В статье дан ответ на вопрос, какая математика нужна программисту. Без нее не получится составить программу, которая не будет занимать всю оперативную память и одновременно решать сложные задачи. В вузах преподают все из перечисленных разделов математики. При обучении стоит обратить внимание именно на них, а не отдавать предпочтение дифференциальным уравнениям, сложным интегралам и так далее. Математика для программистов очень важна не столько для написания программ, сколько для понимания машинных методов, нейронных систем.